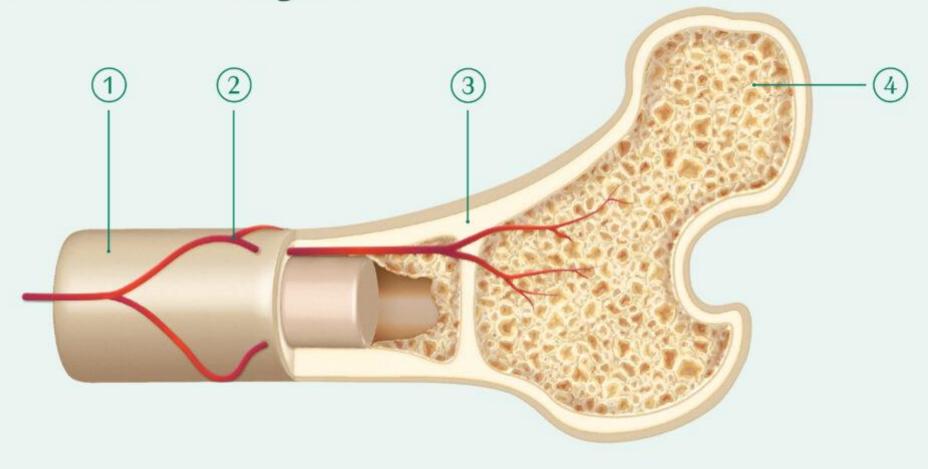
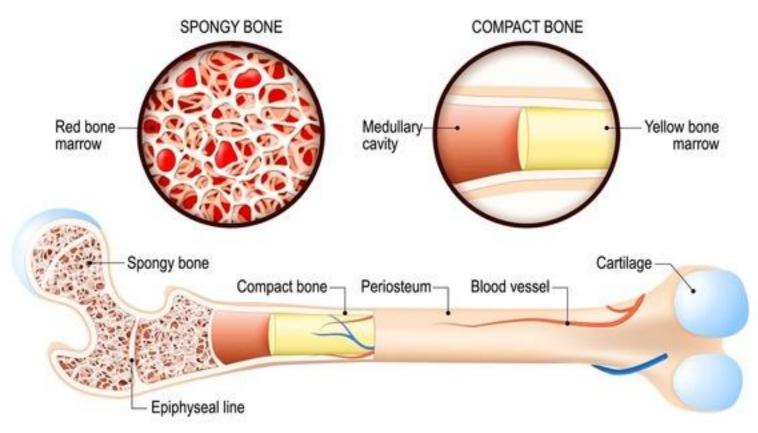


What happens inside your body when bone loss begins and inflammation takes over?


Osteoporosis

https://www.beckman.com/resources/sample-type/tissues/bone-marrow

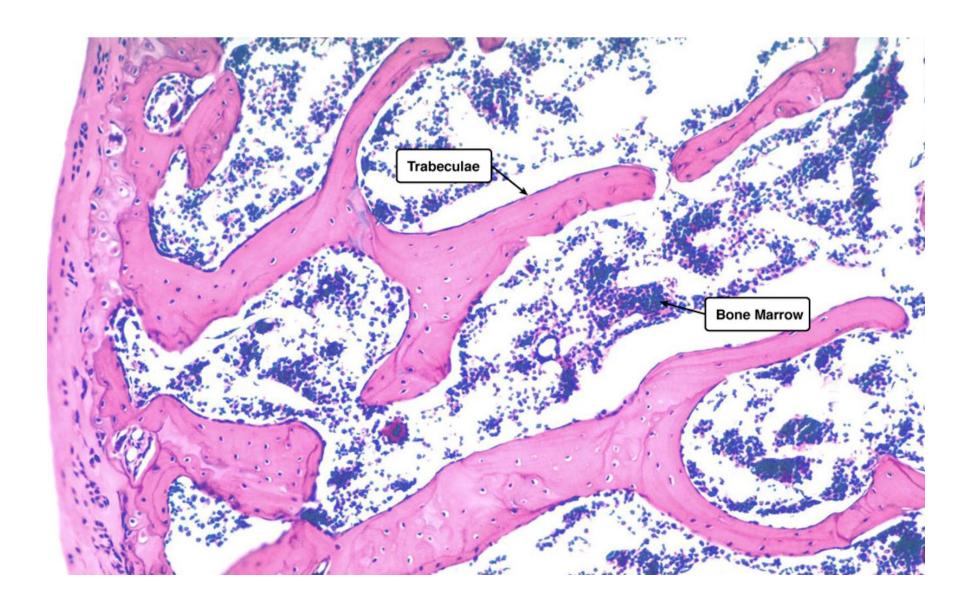
Trabecular Bone Diagram

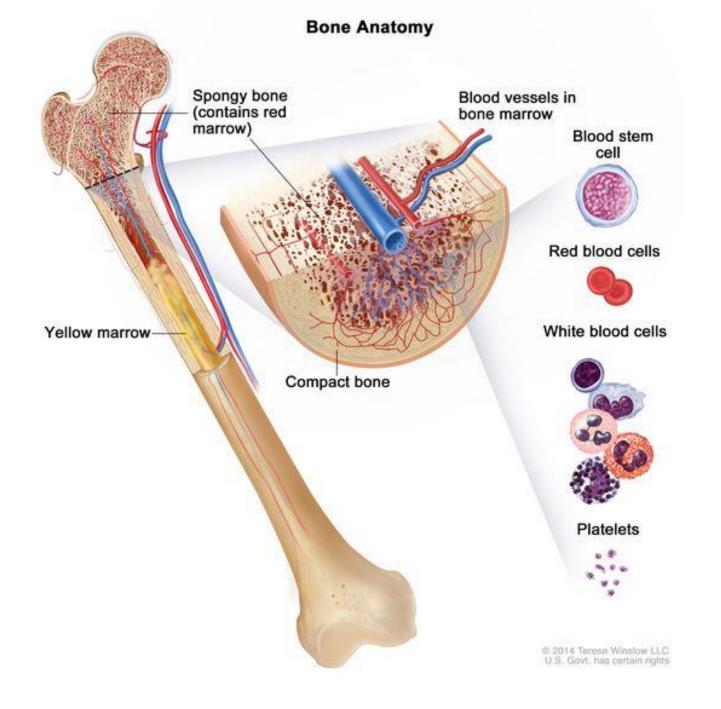

PERIOSTEUM
 (membrane covering bone)

2. BLOOD VESSELS

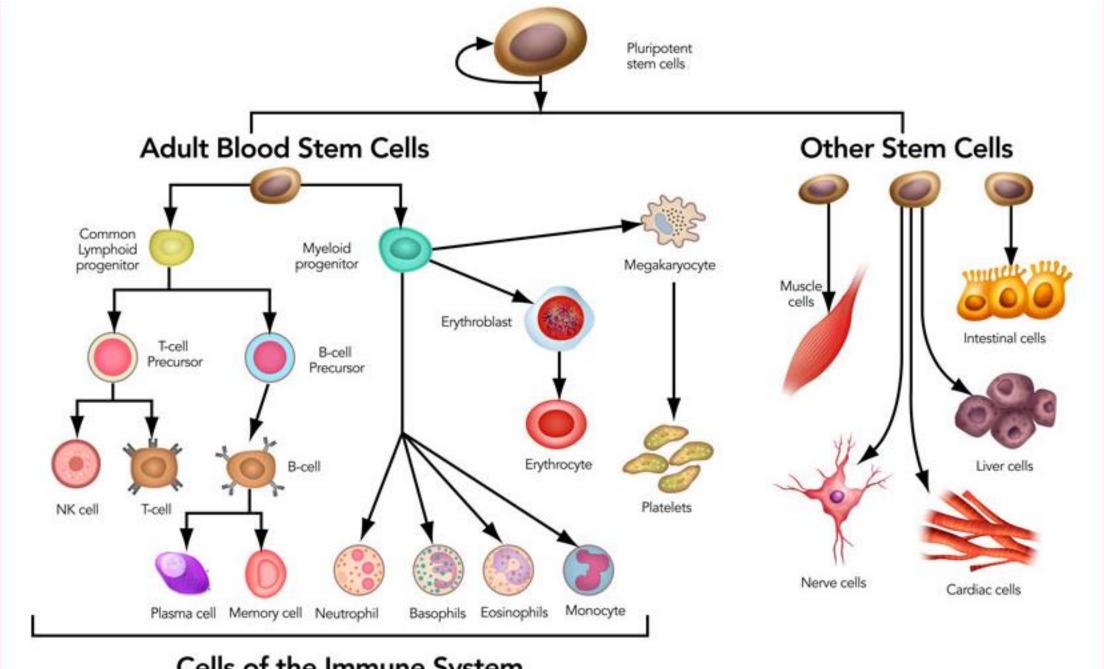
3. CORTICAL (HARD) BONE

4. TRABECULAR (SPONGY) BONE

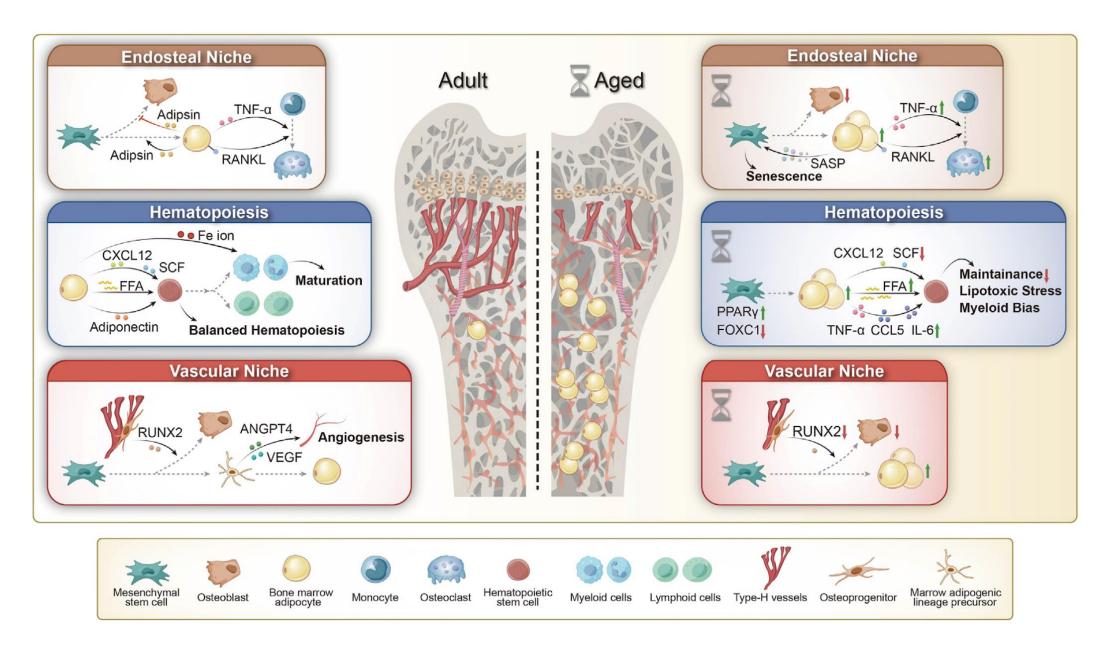

BONE ANATOMY



Trabecular bone, also known as cancellous or spongy bone, is a type of bone tissue that is found in the interior of many bones, such as the ends of long bones (e.g., femur, tibia) and the vertebrae.


Bone marrow production:

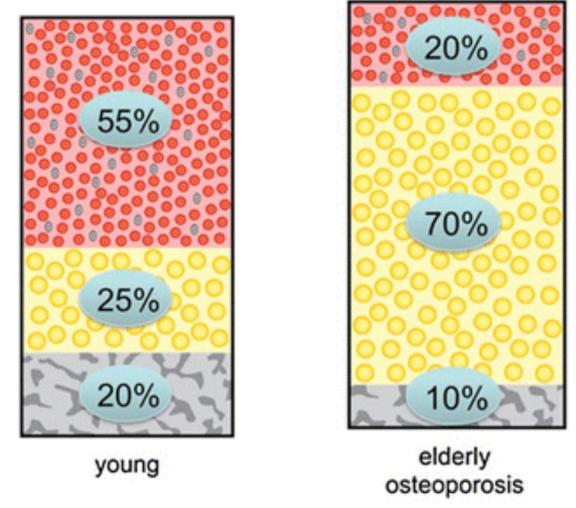
The spaces between the trabeculae are filled with bone marrow, which produces red blood cells, white blood cells, and platele



Stem cells are **made in the bone marrow**, which is the soft, spongy tissue found inside certain bones — especially the **hips, ribs, spine, and the ends of long bones** like the femur (thigh bone).

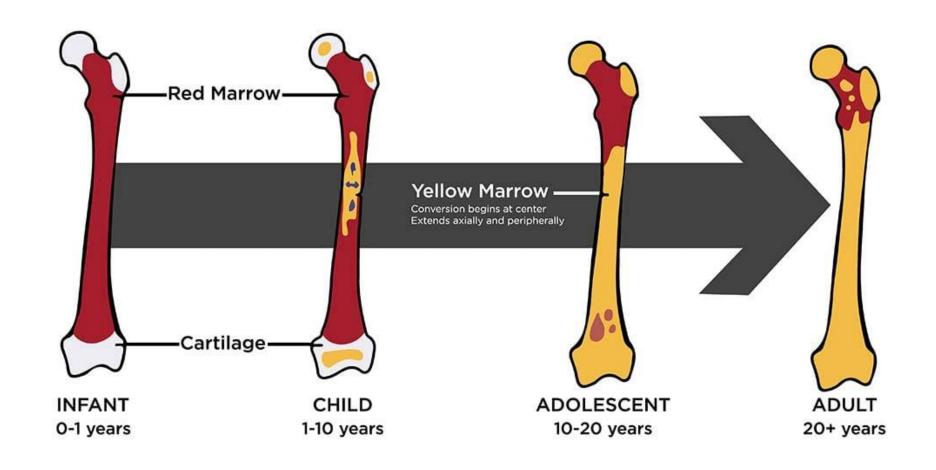
Cells of the Immune System

https://pmc.ncbi.nlm.nih.gov/articles/PMC12367753/


▶ Front Cell Dev Biol. 2025 Aug 7;13:1633801. doi: 10.3389/fcell.2025.1633801 ☑

Bone marrow adipocytes: key players in vascular niches, aging, and disease

Yonggang Fan ^{1,†}, Mai Elkhalek ^{1,†}, Yuheng Zhang ¹, Lu Liu ¹, Qi Tian ^{1,2}, Nareekarn Chueakula ^{1,3}, Saravana K Ramasamy ³, Rinkoo Dalan ^{3,4}, Shukry J Habib ⁵, Anjali P Kusumbe ^{1,2,*}


▶ Author information ▶ Article notes ▶ Copyright and License information

PMCID: PMC12367753 PMID: 40852589

The bone marrow is a confined space. As marrow fat content increases with age, red marrow content decreases since any age-related and/or osteoporotic-related change in trabecular bone volume is relatively small. These physiological changes in the bone marrow are all exaggerated in patients with osteoporosis

https://www.researchgate.net/figure/The-bone-marrow-is-a-confined-space-As-marrow-fat-content-increases-with-age-red-marrow_fig5_316321170

https://www.beckman.com/resources/sample-type/tissues/bone-marrow

Changes in Bone Marrow Around Age 50

- Stem-cell numbers decrease slightly fewer pluripotent (blood-forming) stem cells remain active.
- Stem-cell function declines they become less efficient at repairing tissue and regulating immune balance.
- Fat content increases more yellow (fatty) marrow replaces red marrow, a process called marrow adiposity.
- Immune system becomes more pro-inflammatory known as inflammaging, leading to chronic low-grade inflammation.
- Recovery slows down the body heals more slowly after illness, infection, or blood loss due to reduced stem-cell vitality.

Poor bone marrow function can lead to serious health problems, such as an **increased risk of infection, severe anemia, and bleeding**. It can also cause other issues like fatigue, pale skin, easy bruising, and in some cases, may progress to more severe conditions like leukemia or cause organ damage.

Symptoms and consequences

- Infection: A weakened immune system due to a lack of white blood cells makes you more susceptible to infections.
- Anemia: A shortage of red blood cells leads to fatigue, pale skin, shortness of breath, and dizziness.
- **Bleeding:** Low platelet counts can cause frequent or prolonged nosebleeds, easy bruising, and bleeding from minor cuts.
- Fatigue: The reduced number of oxygen-carrying red blood cells causes extreme tiredness and a lack of energy.
- Organ dysfunction: Some underlying conditions can lead to organ damage or dysfunction.
- **Bone issues:** In conditions like thalassemia, the bone marrow may expand, causing bone structure irregularities, and making bones thinner and more brittle, increasing the risk of fractures.

What Does Bone Marrow Do in Humans?

1. Makes Blood Cells (Hematopoiesis)

Bone marrow is the body's **blood cell factory** — it produces:

- Red Blood Cells (RBCs): Carry oxygen to tissues
- White Blood Cells (WBCs): Fight infections
- Platelets: Help blood clot after injury
- Millions of new blood cells are made every second!

What Does Bone Marrow Do in Humans?

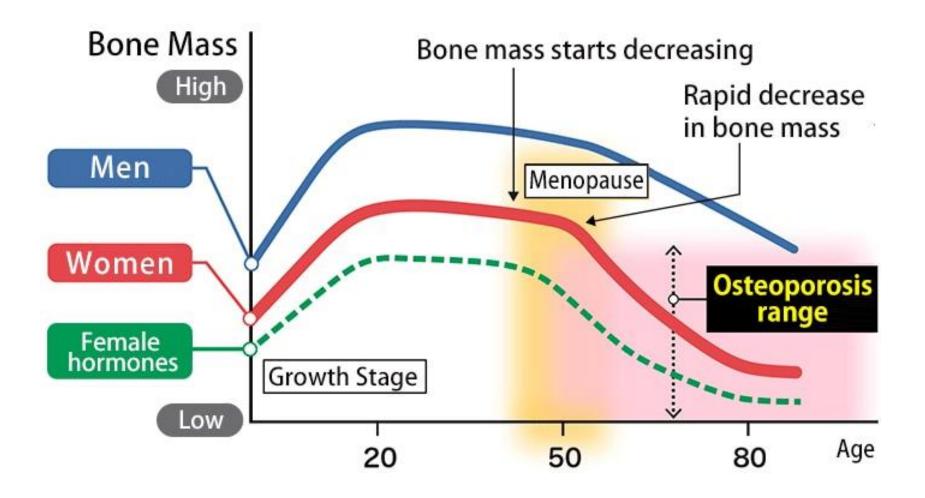
2. Houses Stem Cells

Bone marrow contains stem cells, which can develop into:

- Blood cells
- Bone cells
- Fat cells
- Immune cells

These are the "master cells" that keep your body renewing itself.

What Does Bone Marrow Do in Humans?


3. Supports Bone & Immune Health

- Works with bone-building and bone-breaking cells to maintain bone strength
- Produces and trains immune cells, helping your body defend against illness

4. Stores Fat & Nutrients

- Contains fat cells that store energy
- Releases hormones that influence bone and immune health

Exploring How Inflammation
Drives Bone Loss During
Perimenopause and Menopause

In 1850, a woman in the United States was expected to live to about 43.0 years, though this figure was heavily impacted by high infant and childhood mortality rates. If a woman survived childhood, her life expectancy at age 5 was significantly higher, around 51.2 years.

Key Laboratory Signs Indicative of Chronic Inflammation and Accelerated Bone Marrow Decline

Summary of Key Lab Markers That Hinder Bone Marrow Function

Category	Key Markers
Inflammation	CRP, ESR, Ferritin, Fibrinogen
Metabolic	Fasting Insulin, HbA1c, Homocysteine
Nutritional	Vitamin D, B12, Folate, Iron Panel, Zinc/Copper
Immune/Cellular Stress	WBC Differential, LDH, A/G Ratio

Ordered Items

C-Telopeptide, Serum

o-reiopeptide, Cerum							
TESTS		RESULT	FLAG	UNITS	REFERENCE	INTERVAL	LAB
C-Telopeptide, Se	erum	37		pg/mL			01
Reference Ra	ange:						
Note: The pa	atient's date	of birth	(DOB) and/or	gende:	r was		
not provided	d. Consequent	ly, a com	plete set of	refere	ence		
		DOD1/	!!		J - J		

range data is shown. When DOB and/or gender is provided, only the appropriate age/gender reference range is printed.

Gender Range

Males 38 - 724

Males 38 - /2

Females

Premenopausal 34 - 635 Postmenopausal 34 - 1037

♦ CTX (C-Telopeptide) Blood Test – Bone Breakdown Marker

What CTX Measures (in simple terms):

The CTX blood test shows how quickly your bones are breaking down.

When your body removes old bone tissue, tiny pieces of a protein called **collagen** get released into your blood. These pieces are called **CTX**.

- High CTX means your bones are breaking down too fast a sign of bone loss.
- Low CTX means bone breakdown is slower and more balanced a healthier state.

Doctors use this test to detect bone loss early, often before it shows up on a bone density scan (DEXA).

Use **Serum CTX** if you are:

- Tracking bone loss (osteopenia/osteoporosis)
- Monitoring response to functional medicine or nutritional therapy
- Measuring inflammation-driven bone resorption
- Evaluating post-menopausal bone health or long-term steroid use

How Often to Repeat

- Every 3–6 months after an intervention
- Always under the same conditions (fasting, morning, same lab)

3. How to Track Progress

Take baseline \rightarrow intervene \rightarrow retest \rightarrow compare.

Example protocol:

Step	Action	Timing
Baseline Test	Measure CTX before starting treatment	Day 0
Intervention	Implement protocol (e.g., vitamin D, magnesium, K2, anti-inflammatory diet, resistance training)	8-12 weeks
Retest	Same conditions, same lab	3–6 months later

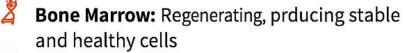
10/23/2025

CBC With Differential/Platelet

	Test	Current Resu	lt and Flag	Previous Result and Date		Units	Reference Interval
V	WBC 01	2.6	Low	2.4	06/13/2025	x10E3/uL	3.4-10.8
	RBC ⁰¹	4.19		4.27	06/13/2025	x10E6/uL	3.77-5.28
	Hemoglobin 01	13.3		11.9	06/13/2025	g/dL	11.1-15.9
	Hematocrit 01	40.8		37.8	06/13/2025	%	34.0-46.6
	MCV 01	97		89	06/13/2025	fL	79-97
	MCH 01	31.7		27.9	06/13/2025	pg	26.6-33.0
	MCHC 01	32.6		31.5	06/13/2025	g/dL	31.5-35.7
	RDW 01	13.5		17.1	06/13/2025	%	11.7-15.4
	Platelets 01	221		213	06/13/2025	x10E3/uL	150-450
	Neutrophils 01	48		38	06/13/2025	%	Not Estab.
	Lymphs 01	38		42	06/13/2025	%	Not Estab.
	Monocytes 01	4		7	06/13/2025	%	Not Estab.
	Eos 01	10		13	06/13/2025	%	Not Estab.
	Basos 01	0		0	06/13/2025	%	Not Estab.
▼	Neutrophils (Absolute) 01	1.2	Low	0.9	06/13/2025	x10E3/uL	1.4-7.0
	Lymphs (Absolute) 01	1.0		1.0	06/13/2025	x10E3/uL	0.7-3.1
	Monocytes(Absolute) 01	0.1		0.2	06/13/2025	x10E3/uL	0.1-0.9
	Eos (Absolute) 01	0.3		0.3	06/13/2025	x10E3/uL	0.0-0.4
	Baso (Absolute) 01	0.0		0.0	06/13/2025	x10E3/uL	0.0-0.2
	Immature Granulocytes 01	0		0	06/13/2025	%	Not Estab.
	Immature Grans (Abs) 01	0.0		0.0	06/13/2025	x10E3/uL	0.0-0.1

Insightful Clinical Case Study

Bone Marrow Recovery: Before & After Functional Medicine Care

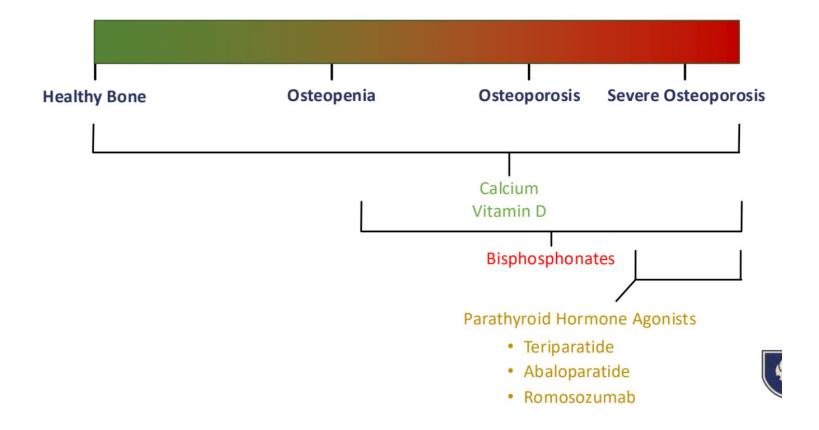

Overall Summary: The bone marrow is clearly stronger and more active—producing healthier red and white blood cells. This shows improved immune defense, oxygen delivery, and reduced infiammation.

Marker	Before	After	Functional Meaning		
WBC (White Bloud Cells)	2.4	2.6	Bone marrow producing more immune cells		
Neutrophils (Abs)	0.9	1.3	Stronger front-line infection defense		
Hemoglobin	11.9	13.3	Improved oxygen & energy delivery		
Hematocrit	37.8	40.8	Better red bloud cell mass		
RDW	17.1	13.5	More uniform, healthy redblovd cells		
MCV/MCH/MCHC	Low	Normalized	Balanced nutrients (B-vitamins, iron)		

Functional Interpretation

Immune System: More resilient and balanced

Inflammation: Better controlled


Energy & Oxygenation: Enhanced through improved red cell quality

Summary

After several rmonths of Functional Medicine care, labs now reflect:

- ✓ Healthler bone marrow output
- ✓ Improved Immune capacity
- ✓ Stronger oxygen transport

Current Approaches to Bone Loss

 The conventional model for osteoporosis management is heavily weighted towards pharmacological support and does not adequately address the management of underlying risk factors for bone loss. Effective functional medicine approaches to halt chronic inflammation and restore both bone marrow and bone health.

for Healthy Bone Maintenance

Optimize Bone Remodeling Modulators

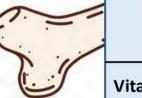
- → Sunlight exposure
- → Vitamin D intake
- → Vitamin D metabolism
- → Hormones
 - → Estrogen
 - → Testosterone
 - \rightarrow Thyroid hormones

↓ Activators of Osteoclasts

- → Oxidative stress
 - → Smoking
 - → Alcohol (> 2 drinks per day)
 - → Antioxidant depletion
- → Systemic inflammation
 - → Inflammatory diseases
 - > Clinical factors that promote inflammation
 - \rightarrow Inflammatory diet
 - → Microbiome dysfunction
 - → Dysbiosis
 - → Intestinal permeability
 - → Reduced SCFA production
- → Metabolic syndrome
- \rightarrow Obesity
- → Stress /↑ Cortisol/ Corticosteroids
- → Elevated homocysteine

↑ Activators of Osteoblasts

- → Weight-bearing exercise
- → Myokines from muscle mass


Essential Nutrients for Bone Mineralization

- → Vitamin D
- → Calcium
- → Vitamin K2
- → Magnesium
- → Boron
- \rightarrow Zinc

Nutraceutical Considerations for Osteopenia / Osteoporosis

Stimulate Osteoblasts

Vitamin D — 1000-5000 IU Strontium citrate — 500-1200 mg

Nutrients Necessary for Bone Mineralization

Vitamin D — 1000-5000 IU

Calcium - 2000 mg

Vitamin K2 — 800 mcg

Magnesium — 1200 mg

Manganese — 4 mg

Boron — 12 mg

Zinc — 10 mg

↓ Osteoclast Response

Anti-inflammatories

- EPA/DHA
- Turmeric
- Resveratrol

Microbiome support

- · Short-chain fatty acids
- Probiotics

Antioxidants

- · Vitamins A, C, E
- Polyphenol compounds
- Glutathione

Homocysteine reduction

- B12
- Methylfolate

Yes, from a functional medicine perspective, systemic inflammation can get into the bone marrow and disrupt its function. Functional medicine focuses on addressing the root causes of chronic inflammation throughout the body, as opposed to simply treating symptoms.

Here is how chronic inflammation affects the bone marrow and how a functional medicine approach can address it. *②*

How inflammation impacts the bone marrow

- Affects blood cell production: The bone marrow is where hematopoietic stem cells
 (HSCs) reside and develop into all types of blood cells. Chronic inflammatory signals can
 force these stem cells into "emergency hematopoiesis," pushing them to produce more
 immune cells like neutrophils. Over time, this over-proliferation can exhaust the stem
 cells and lead to bone marrow failure, anemia, and an increased risk of blood cancers.
- Alters the bone marrow microenvironment: The bone marrow contains a specialized microenvironment, or niche, that is critical for maintaining healthy HSCs. Inflammation, aging, and exposure to toxins can alter this microenvironment by changing the cellular and cytokine composition, which can lead to dysfunctional hematopoiesis.
- Creates bone marrow edema: Inflammation can also lead to bone marrow edema (fluid accumulation in the marrow), which is visible on an MRI and can cause bone pain and disability.
- **Promotes bone breakdown**: The bone marrow microenvironment also influences the balance of bone-building osteoblasts and bone-resorbing osteoclasts. Chronic inflammation can trigger an increase in osteoclast activity and a decrease in osteoblast activity, leading to conditions like osteoporosis.

https://www.google.com/search?q=can+inflammation+get+into+your+bone+marrow+on+a+functional+medicine+level&sca_esv=8154411a606eb35c&rlz=1C5CHFA_enUS1118US1118
&sxsrf=AE3TifNY0ZTuF-7-atOX6bllGAk2hLpoZw%3A1760738706357&udm=50&fbs=AlljpHxU7SXXniUZfeShr2fp4giZ1Y6MJ25_tmWlTc7uy4Klemkjk18Cn72Gp24fGkjjh6w8f_UmwvltOb_M1ylww2SbnHRjS3sgwVBPbo0fTnalwpHy9xTpJcr5tWJ3jPBc0A50RX_-oaTJiytR-

LvyR8uw8kQFPd0v68xBK5Gv12z1LwwSpFUi6Vn_vuveFd2AEfe1epcD_27WUwsf4jm7AqkJ1E_A&aep=1&ntc=1&sa=X&ved=2ahUKEwjA2onpnqyQAxWH4MkDHVX2E0cQ2J8OegQIDBAE&bi w=1185&bih=952&dpr=1.8&mtid=rr3yaOquJLijptQPlcbwEA&mstk=AUtExfAOEkjrhFQ5YFsjIE3YBDNoUZSdmxYypiN1sxMoEX16NEakBroF2IHsj2-GaWu0OrTqAfO_ljHgaOt9k_vkUvuSlzN8-wZwnJqH1728ff-

HAHR_4T_544h6jixVGTJx9cpSFsUG2UNe_HhhEdLY1hxOYrslEA3lCYaMY6oKOVwEcuPVHnyBPDZ6OfbToL4UuZdUa78r24x_Z6gZ9QmwNINuMysvZobAuweluAyehTiolMiLqn7P3eVowF7J23 GirFo0a3pVwfB6MBTARL-4xlXdRlWhhk6CAXYAVe31iYdYB0dBKJMru-

 $\label{eq:control} U_2IYJPZMT6kplDaLs_KpfLa2NqXSFomFpze1tQihO9kjZFfDQkHZGaAEbltTptKXeDNKXIGuVnSFwXsQqO918fPmZQFl9V4oYv7L7r4PiL_7vzNVGtjAoTFIQERiqV6ujNRswJHdJw3LJrj2A4Py3-0cdg6qfCml2hDzsV6mk&csuir=1$

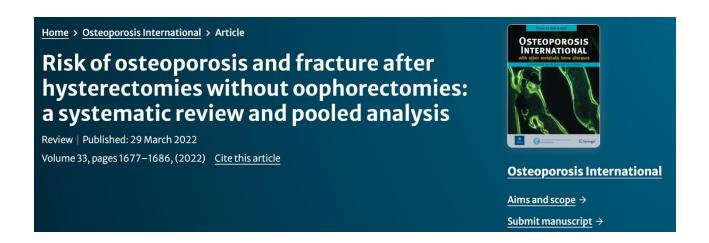
► Hematology Am Soc Hematol Educ Program. 2019 Dec 6;2019(1):294–302. doi: 10.1182/hematology.2019000045 ☑

Inflammatory bone marrow microenvironment

Nils B Leimkühler ¹, Rebekka K Schneider ^{1,⊠}

▶ Author information ▶ Copyright and License information

PMCID: PMC6913454 PMID: 31808897


Abstract

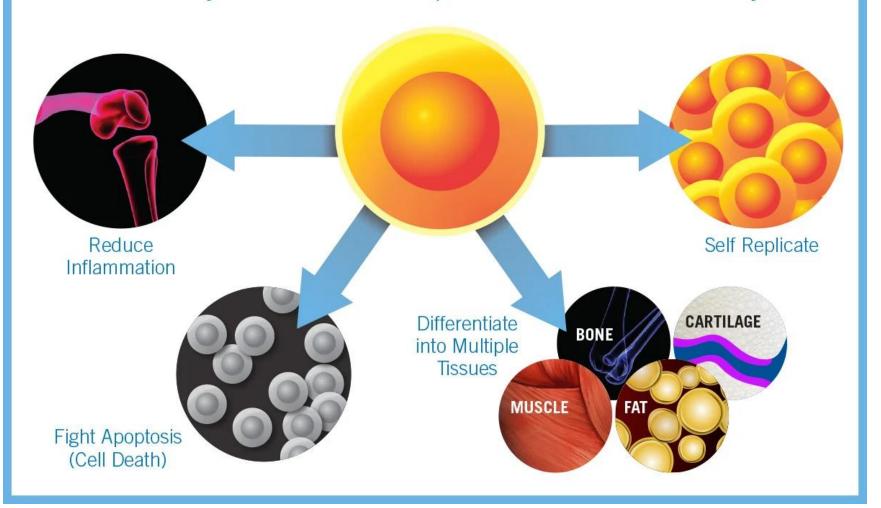
Self-renewing hematopoietic stem cells and their progeny, lineage-specific downstream progenitors, maintain steady-state hematopoiesis in the bone marrow (BM). Accumulating evidence over the last few years indicates that not only primitive hematopoietic stem and progenitor cells (HSPCs), but also cells defining the microenvironment of the BM (BM niche), sense hematopoietic stress signals. They respond by directing and orchestrating hematopoiesis via not only cell-intrinsic but also cell-extrinsic mechanisms. Inflammation has many beneficial roles by activating the immune system in tissue repair and as a defense mechanism. However, chronic inflammation can have detrimental effects by stressing HSPCs, leading to cell (DNA) damage resulting in BM failure or even to leukemia. Emerging data have demonstrated that the BM microenvironment plays a significant role in the pathogenesis of hematopoietic malignancies, in particular, through disrupted inflammatory signaling, specifically in niche (microenvironmental) cells. Clonal selection in the context of microenvironmental alterations can occur in the context of toxic insults (eg, chemotherapy), not only aging but also inflammation. In this review, we summarize mechanisms that lead to an inflammatory BM microenvironment and discuss how this affects normal hematopoiesis. We pay particular attention to the process of aging, which is known to involve low-grade inflammation and is also associated with age-related clonal hematopoiesis and potentially malignant transformation.

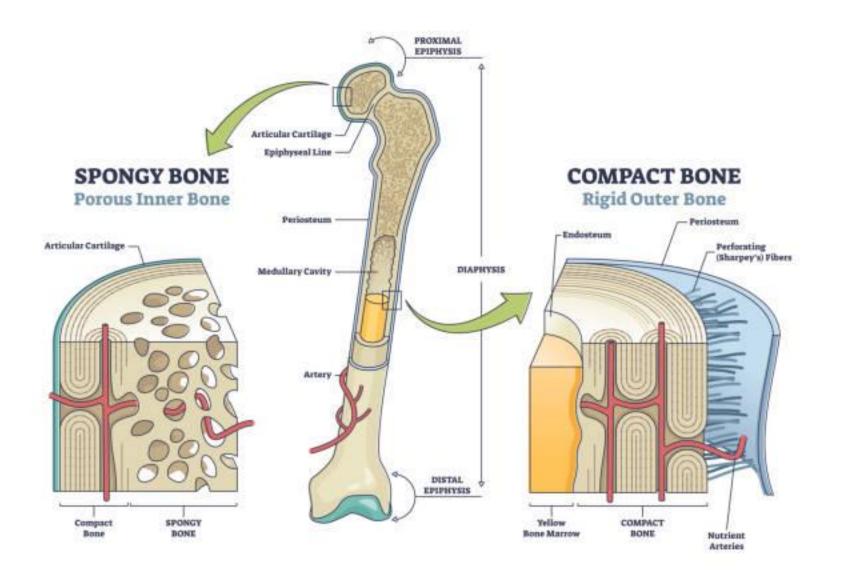
https://pmc.ncbi.nlm.nih.gov/articles/PMC6913454/

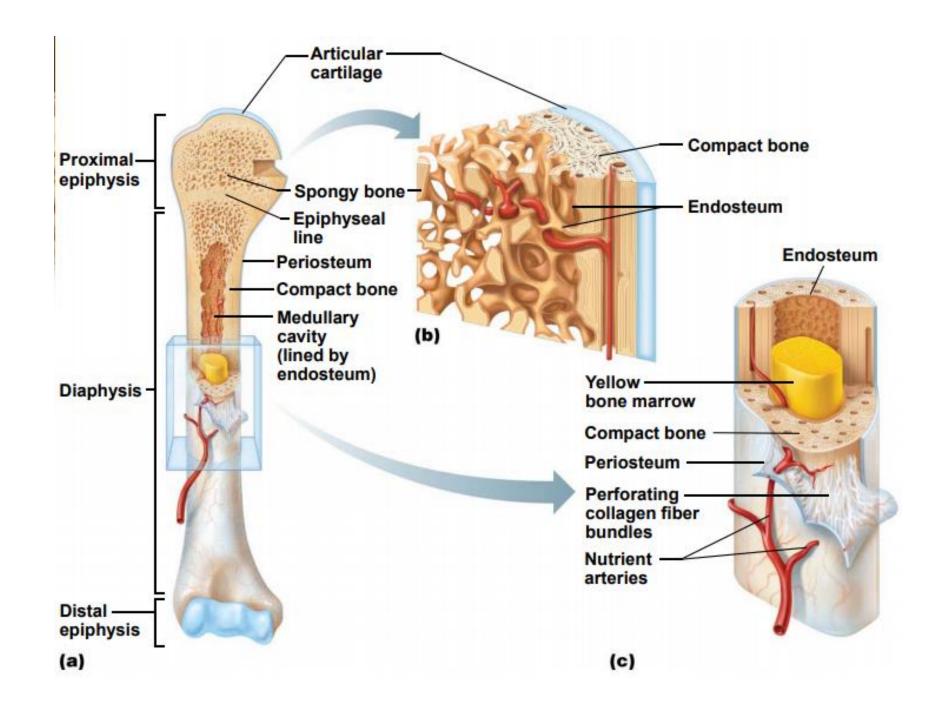
Bone turnover markers (BTMs) are used widely, in both research and clinical practice. In the last 20 years, much experience has been gained in measurement and interpretation of these markers, which include commonly used bone formation markers (bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide); and commonly used resorption markers (serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen, and tartrateresistant acid phosphatase type 5b). BTMs are usually measured by enzyme-linked immunosorbent assay or automated immunoassay. Sources contributing to BTM variability include uncontrollable factors (eg. age, gender, ethnicity) and controllable factors, particularly relating to collection conditions (eg, fasting/feeding state, and timing relative to circadian rhythms, menstrual cycling, and exercise). Pregnancy, season, drugs, and recent fracture(s) can also affect BTMs. BTMs correlate with other methods of assessing bone turnover, such as bone biopsies and radiotracer kinetics, and can usefully contribute to diagnosis and management of several diseases such as osteoporosis, osteomalacia, Paget's disease, fibrous dysplasia, hypophosphatasia, primary hyperparathyroidism, and chronic

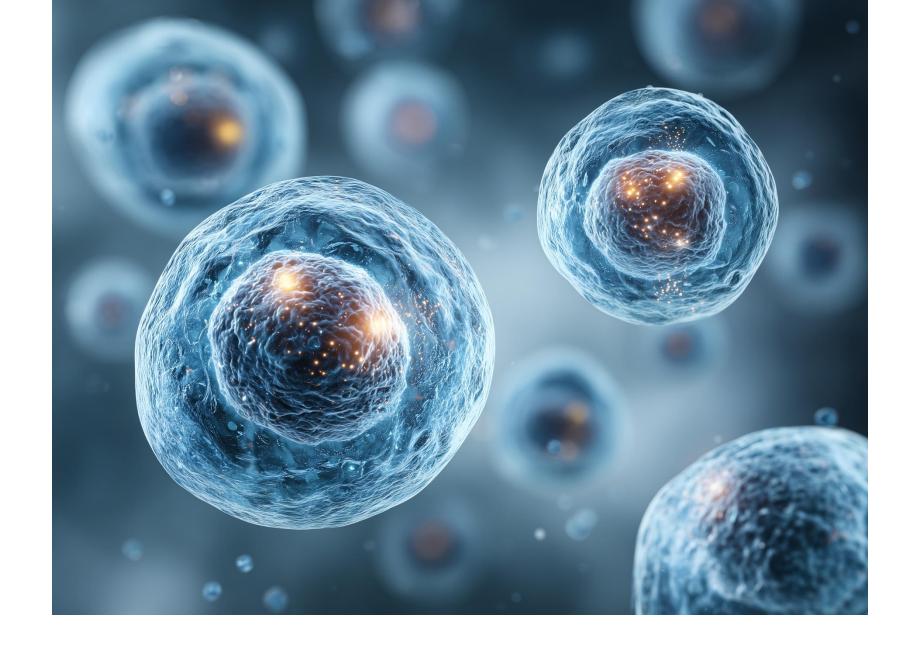
https://pmc.ncbi.nlm.nih.gov/articles/PMC10166271/

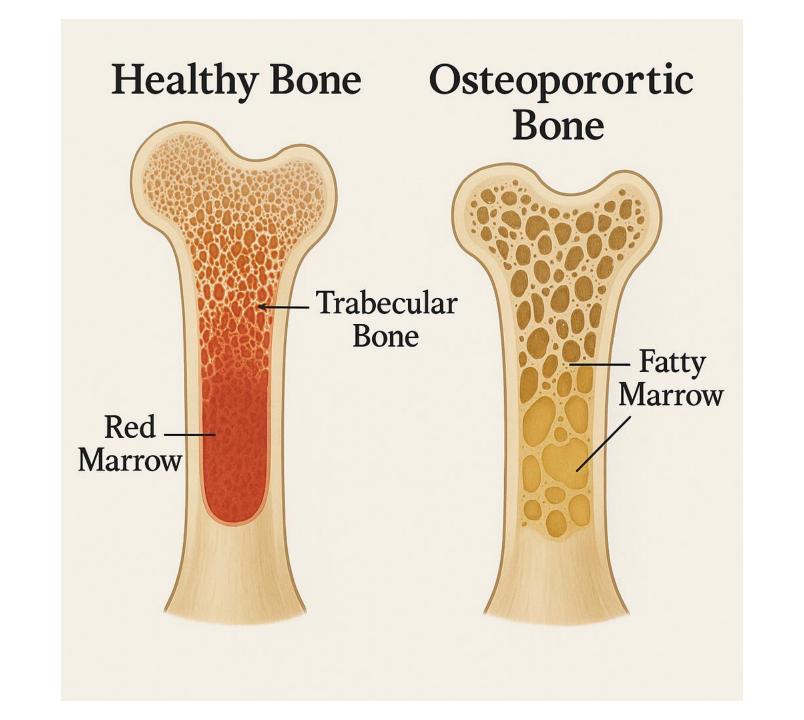
Conclusions

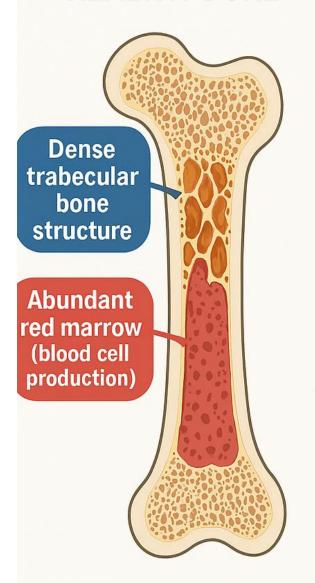

This is the first study to quantify the association between hysterectomy without oophorectomies and osteoporosis/fracture risk through a meta-analysis and has subsequently confirmed its positive relationship. Additional large-sample rigorously prospective cohorts are still warranted to validate the present evidence.

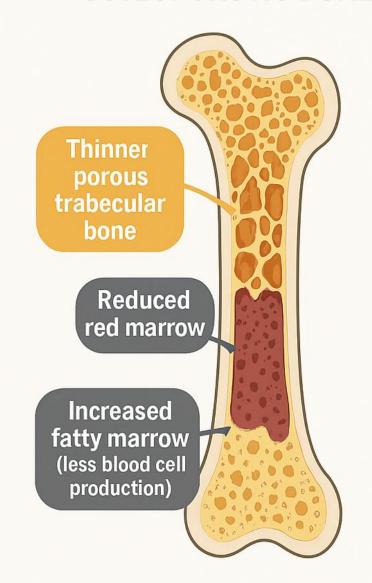

https://link.springer.com/article/10.1007/s00198-022-06383-1#change-history

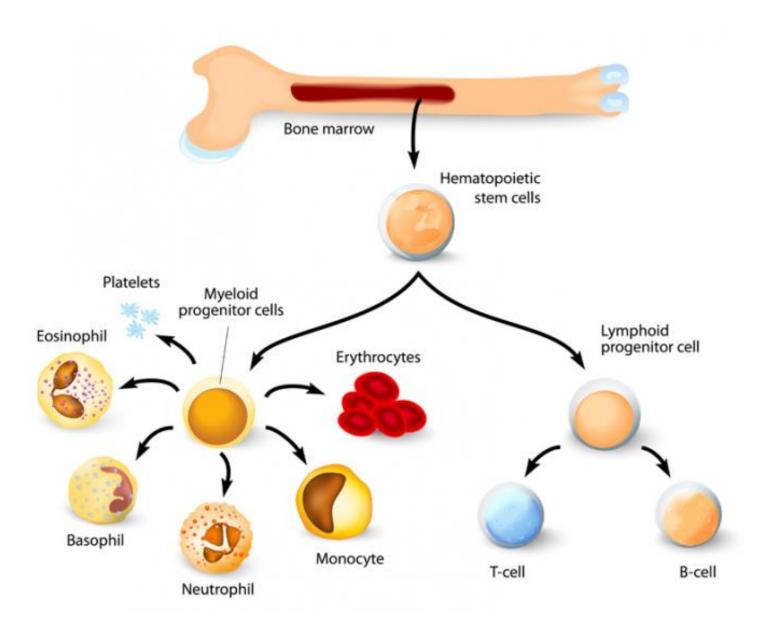

C-Telopeptide cross-links are peptide fragments from type I collagen that are released into the bloodstream during bone resorption. They are used as a sensitive marker to measure the rate of bone breakdown in conditions like osteoporosis and osteoarthritis. The concentration of C-telopeptide (CTX) can be measured in serum or urine to monitor therapies that affect bone metabolism.


WHAT IS A STEM CELL?


A mesenchymal stem cell is a primitive cell with the ability to:







HEALTHY BONE

OSTEOPOROTIC BONE

https://microbenotes.com/bone-marrow-types-structure-and-functions/

- Red bone marrow makes almost all of the stem cells around 90–100% of all new blood stem cells.
- Yellow bone marrow makes very few stem cells it's mostly fat and is not active in producing new blood cells under normal conditions.